Marginal regression models with time-varying coefficients for recurrent event data.
نویسندگان
چکیده
Recurrent event data arise frequently from medical research. Examples include repeated infections, recurrence of tumors, relapse of leukemia, repeated hospitalizations, recurrence of symptoms of a disease, and so on. In the analysis of recurrent event data, the proportional rates model assumes that the regression coefficients are time invariant. In reality, however, these parameters may vary over time, and the temporal covariate effects on the event process are of great interest. In this article, we formulate a class of semiparametric marginal rates models, which incorporate a mixture of time-varying and time-independent parameters, to analyze recurrent event data. For statistical inference on model parameters, an estimation procedure is developed and asymptotic properties of the proposed estimators are established. In addition, we develop tests for investigating whether or not covariate effects vary with time. The finite-sample behaviors of the proposed methods are examined in simulation studies. An example of application of the proposed methodology is illustrated on a set of data from a clinic study on chronic granulomatous disease.
منابع مشابه
Partly functional temporal process regression with semiparametric profile estimating functions.
SUMMARY Marginal mean models of temporal processes in event time data analysis are gaining more attention for their milder assumptions than the traditional intensity models. Recent work on fully functional temporal process regression (TPR) offers great flexibility by allowing all the regression coefficients to be nonparametrically time varying. The existing estimation procedure, however, preven...
متن کاملSpatial Varying Coefficient Regression Model For Relative Risk Factors of Esophageal Cancer Patients
In conventional methods for spatial survival data modeling, it is often assumed that the coefficients of explanatory variables in different regions have a constant effect on survival time. Usually, the spatial correlation of data through a random effect is also included in the model. But in many practical issues, the factors affecting survival time do not have the same effects in different regi...
متن کاملMarginal means/rates models for multiple type recurrent event data.
Recurrent events are frequently observed in biomedical studies, and often more than one type of event is of interest. Follow-up time may be censored due to loss to follow-up or administrative censoring. We propose a class of semi-parametric marginal means/rates models, with a general relative risk form, for assessing the effect of covariates on the censored event processes of interest. We formu...
متن کاملبهکارگیری روشهای هموارسازی برای برآورد ضرایب مدل نرخ وابسته به زمان در تحلیل بقا و کاربرد آن در مبتلایان به بیماری پسوریازیس
Background and Objectives: In studies in which each person may experience an event at different times, they are recurrent events.One of the most popular approaches in analyzing recurrent event is obtaining an estimate of the means/rate of events at different times. In this context,one of the things that could help to better understand the effect of this factor on the response is determining the...
متن کاملModeling and Forecasting Iranian Inflation with Time Varying BVAR Models
This paper investigates the forecasting performance of different time-varying BVAR models for Iranian inflation. Forecast accuracy of a BVAR model with Litterman’s prior compared with a time-varying BVAR model (a version introduced by Doan et al., 1984); and a modified time-varying BVAR model, where the autoregressive coefficients are held constant and only the deterministic components are allo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistics in medicine
دوره 30 18 شماره
صفحات -
تاریخ انتشار 2011